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Abstract

Since the outbreak of coronavirus disease 2019 (Covid‐19) in December 2019,

caused by the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), the
number of confirmed infections has risen to more than 242 million worldwide, with

nearly 5 million deaths. Currently, nine Covid‐19 vaccine candidates based on the

original Wuhan‐Hu‐1 strain are at the forefront of vaccine research. All nine had an
efficacy over 50% against symptomatic Covid‐19 disease: NVX‐CoV2373 (∼96%),

BNT162b2 (∼95%), mRNA‐1273 (∼94%), Sputnik V (∼92%), AZD1222 (∼81%),

BBIBP‐CorV (∼79%), Covaxin (∼78%), Ad26.CoV.S (∼66%) and CoronaVac (∼51%).

However, vaccine efficacy (VE) can be jeopardised by the rapid emergence and

spread of SARS‐CoV‐2 variants of concern (VOCs) that could escape from neu-

tralising antibodies and/or cell‐mediated immunity. Rare adverse events have also

been reported soon after administration of viral vector and mRNA vaccines.

Although many Covid‐19 vaccines have been developed, additional effective vac-

cines are still needed to meet the global demand. Promising Covid‐19 vaccines such
as WIBP‐CorV, AD5‐nCOV, ZyCoV‐D, CVnCoV, EpiVacCorona and ZF2001 have

advanced to clinical studies. This review describes the most relevant mutations in

the SARS‐CoV‐2 spike protein, discusses VE against VOCs, presents rare adverse

events after Covid‐19 vaccination and introduces some promising Covid‐19 vaccine
candidates.
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1 | INTRODUCTION

At the end of December 2019, a number of cases of pneumonia of

unknown aetiology were detected in Wuhan, Hubei Province of

China. A few days later, the Chinese authorities identified a novel

coronavirus as the etiological agent of the disease.1 As soon as the

complete genome sequence of the ‘Wuhan virus’ was published

online, the structures of various viral proteins were determined.2

Based on the phylogenetic and taxonomic analysis of the causative

agent, the International Committee on Taxonomy of Viruses desig-

nated the new virus as ‘severe acute respiratory syndrome corona-

virus 2 (SARS‐CoV‐2)’.3 Subsequently, the World Health

Organization (WHO) proposed ‘Covid‐19’ as an abbreviation of

coronavirus disease 2019.4

Abbreviations: ACE2, angiotensin‐converting enzyme 2; Ad, adenovirus; CEPI, Coalition for Epidemic Preparedness Innovations; Covid‐19, coronavirus disease 19; E, envelope protein; FP,
fusion peptide; GBS, Guillain–Barré syndrome; HR1, heptapeptide repeat sequence 1; HR2, heptapeptide repeat sequence 2; ICTV, International Committee on Taxonomy of Viruses; LNP,

lipid nanoparticles; M, membrane protein; MERS‐CoV, middle east respiratory syndrome coronavirus; MHRA, Medicines and Healthcare products Regulatory Agency; MPER, membrane‐
proximal external region; N, nucleocapsid protein; nAb, neutralising antibody; NIAID, National Institute of Allergy and Infectious Diseases; NTD, N‐terminal domain; ORF, open reading frame;
PF4, platelet factor 4; PR, pityriasis rosea; RBD, receptor‐binding domain; S, spike protein; S1, subunit 1; S2, subunit 2; SARS‐CoV, severe acute respiratory syndrome coronavirus; SARS‐CoV‐
2, severe acute respiratory syndrome coronavirus 2; TM, transmembrane domain; TMPRSS2, transmembrane serine protease 2; TTS, thrombosis and thrombocytopenia syndrome; VE,

vaccine efficacy; VOCs, variants of concern; WHO, World Health Organization; WT, wild‐type.

Rev Med Virol. 2022;32:e2313. wileyonlinelibrary.com/journal/rmv © 2021 John Wiley & Sons Ltd. - 1 of 16

https://doi.org/10.1002/rmv.2313

https://doi.org/10.1002/rmv.2313
https://orcid.org/0000-0003-1992-7976
mailto:hadj_hassine_ekbell@yahoo.fr
https://orcid.org/0000-0003-1992-7976
http://wileyonlinelibrary.com/journal/rmv
https://doi.org/10.1002/rmv.2313


Non‐pharmaceutical measures including physical distancing,

proper use of masks, teleworking, isolations and quarantines have

been imposed to delay the spread of Covid‐19.5,6 However, these

behavioural measures have unwanted effects, such as a negative

psychological impact, major depressions and mental health conse-

quences.7 Developing a safe and efficient vaccine has been the only

promising goal for the successful fight against Covid‐19. WHO

declared the global pandemic in March 2020.8 In 22 October 2021,

there were 322 vaccine candidates in development, according to

information provided by the WHO. Around 40% were in clinical

development (128 vaccine candidates), while 194 were in preclinical

development.9 The nine leading vaccines – manufactured by Pfizer‐
BioNTech, Moderna, Gamaleya, Novavax, Oxford‐AstraZeneca,
Sinopharm, Bharat Biotech, Johnson & Johnson and Sinovac – have

been developed based on the use as antigen of the viral S glyco-

protein of the wild‐type (WT) strain. The emergence of four SARS‐
CoV‐2 variants has raised concerns related to reduced effective-

ness of neutralising antibodies and/or cell‐mediated immunity eli-

cited by currently available vaccines. According to the WHO, these

variants are denoted as Alpha, Beta, Gamma and Delta.10

Rare adverse events have also been described following the

immunisation with CoronaVac, AZD1222, Ad26.COV2.S, BNT162b2

and mRNA‐1273.11‐18 However, causal links between Covid‐19
vaccines and rare adverse events have not been established.

This review describes spike mutations of interest, discusses

vaccine efficacy (VE) against variants of concern (VOCs) and reports

on rare adverse events occurring after Covid‐19 vaccination. It also

serves as an introduction to some promising Covid‐19 vaccine can-

didates. To the best of my knowledge, this is the first paper reviewing

the VE of nine different vaccine candidates against VOC, out-

lining severe adverse events following the immunisation with five

Covid‐19 vaccines and presenting some potential good vaccines in

the pipeline.

2 | NOVEL SARS‐CoV‐2

2.1 | Structure and genomic characteristics

SARS‐CoV‐2 is a spherical or pleomorphic enveloped virus with a

diameter in the range of 70–110 nm containing a large unsegmented

single‐stranded positive‐sense RNA (Figure 1a).19 The genome size of

SARS‐CoV‐2 is about 29.9 kb, which is between the genome sizes of

severe acute respiratory syndrome coronavirus (SARS‐CoV)
(∼29.7 kb) and middle east respiratory syndrome coronavirus

(∼30.1 kb).20,21 It is composed of a 5ʹ‐leader‐UTRs‐replicase‐S‐E‐M‐
N‐3ʹ UTR‐poly‐A tail sequence and is characterised by the presence

of a variable number (6–12) of open reading frames (ORFs) between

conserved genes (ORF1ab, S, E, M and N).1 S, M, E and N genes

located at the ORFs 10 and 11 encode the four structural proteins: a

spike protein (S), a membrane protein (M), an envelope protein (E)

and a nucleocapsid protein (N), that are responsible for viral repli-

cation and propagation (Figure 1b).22

In the viral envelope, the S proteins form a crown‐like structure
that justifies the name given to this type of viruses (‘corona’). The S

protein is the most immunogenic component of the virus, and

therefore the most potent target of neutralising antibodies that

inhibit virus infection.20 The M protein is the largest and the most

abundant structural protein, which defines the shape of the virion

and plays a crucial function in the budding process of viral particles

from their host cells. The E protein is essential for virus infection and

replication.20 The assembly of S, E and M proteins forms the viral

coat (Figure 1a). The N protein is associated with the genomic RNA

and maintains the genetic material inside the envelope. It is an

essential protein for viral replication. During self‐assembly of viral

particles, the M viral protein cooperates with other structural pro-

teins to form the complete virion.23

2.2 | The spike protein and its role in the
pathogenesis of SARS‐CoV‐2

The SARS‐CoV‐2 S protein (Mr 180,000–200,000) is made of 1273

aa.24 It is composed of two subunits (S1 and S2) (Figure 1c). S1

contains an N‐terminal domain and the receptor‐binding domain

(RBD). The ‘S1 head’ is responsible for receptor binding. S2 includes

an internal membrane fusion peptide, two heptapeptide repeat se-

quences (HR1 and HR2), a membrane‐proximal external region, and a
transmembrane domain (TM) (Figure 1d).23,25 The ‘S2 filament’ fa-

cilitates the entry of the genome into host cells by fusing the host and

viral membranes.26

The trimeric S protein is the main surface glycoprotein,27 which

binds to the human angiotensin‐converting enzyme 2 (ACE2) for viral
entry and the serine host‐cell protease 2 for S protein priming.28

Therefore, SARS‐CoV‐2 S glycoprotein is the most relevant source of
antigens for vaccine development.23

2.3 | Important mutations in the spike protein that
appear in emerging SARS‐CoV‐2 variants

Current Covid‐19 vaccines have been developed by including the S

protein found in the original Wuhan‐hu‐1 strain. However, SARS‐
CoV‐2 is throwing out notable missense mutations within the

trimeric S protein (Figure 2). SARS‐CoV‐2 VOCs have acquired some
of the potential spike protein mutations (Table 1) that may increase

their transmissibility and/or virulence with a possible reduction of

vaccine effectiveness.29‐31

Non‐synonymous mutations of particular interest that may be

promoting the spread of SARS‐CoV‐2 include the following.

2.3.1 | Amino acid substitutions affecting K417

Lys417 is located in the RBD of the S glycoprotein, whichinteracts

with the human ACE2 receptor protein. A non‐synonymous mutation
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at this position (K417N) appears in the Beta variant (Figure 2b), while

K417T appears in Gamma (Figure 2c).32,33 Both mutations are

associated with increased transmissibility and reduced sensitivity to

neutralising antibodies.33,34

2.3.2 | Amino acid substitution L452R

L452R is found in the Delta variant and refers to the amino acid

change from leucine (L) to arginine (R) (Figure 2d). This RBD mutation

appears to enhance ACE2 receptor binding affinity and can diminish

the interaction with vaccine‐elicited antibodies.35 Moreover, it could

provide resistance to T cells, which are essential to target and

destroy virus‐infected cells.36

2.3.3 | Amino acid substitution E484K

The amino acid substitution E484K, also known as Eeek, indicates a

change from glutamic acid (E) to lysine (K) at position 484. This

missense mutation is shared by Beta and Gamma VOCs.37 Eeek could

improve the capability to escape the immune system by affecting

antibody recognition. As a consequence, it could alter the effective-

ness of current vaccines.38

2.3.4 | Amino acid substitution N501Y

The amino acid substitution N501Y, nicknamed Nelly, is shared by

Alpha (Figure 2a), Beta and Gamma VOCs. The change from

F I GUR E 1 Structure and genomic characteristics of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). (a) Schematic
representation of the SARS‐CoV‐2 structure showing the exterior envelope (E), membrane (M), spike glycoprotein (S), nucleocapsid (N) and
RNA viral genome. (b) Schematic representation of the SARS‐CoV‐2 genome organisation (∼30 kb) showing the two large open reading frames
ORF1a and ORF1b, which encode the non‐structural proteins, separated by the ribosome frameshift site. Genes encoding the structural

proteins are as follows: spike (S), envelope (E), membrane (M) and nucleocapsid (N). The S glycoprotein consists of two subunits. Subunit S1
contains an N‐terminal domain (NTD) and the receptor‐binding domain (RBD). Subunit S2 includes an internal membrane fusion peptide (FP),
two heptapeptide repeat sequences (HR1 and HR2), a membrane‐proximal external region and a transmembrane domain (TM). (c) Schematic

representation of SARS‐CoV‐2 spike protein showing the two subunits: S1 and S2. (d) Crystallographic structure of the SARS‐CoV‐2 spike
protein (PDB ID:6VXX). Figure generated with BioRender
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F I GUR E 2 Important amino acid mutations in the severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) spike glycoprotein
rendering variants of concern shown on an SARS‐CoV‐2 genome representation, and focused on the spike protein. (a) Important amino acid
substitutions in the spike glycoprotein of the Alpha variant, B.1.1.7 lineage. (b) Notable spike mutations of the SARS‐CoV‐2 Beta variant,

B.1.351 lineage. (c) Relevant amino acid substitutions in the spike of the SARS‐CoV‐2 Gamma variant, P.1 lineage. (d) Relevant amino acid
substitutions in the spike of the SARS‐CoV‐2 Delta variant, B.1.617.2 lineage. Figure generated with BioRender. FP, fusion peptide; NTD, N‐
terminal domain; RBD, receptor‐binding domain; TM, transmembrane domain

TAB L E 1 Current variants of concern and spike mutations of interest

WHO name

Lineage
+ additional

mutations Name

Key spike
protein

mutations

Month and
year of first

detection

Country of

first detection Date of designation Concern

Alpha B.1.1.7 VOC‐202012/01 N501Y

D614G

P681H

Sep 2020 United Kingdom 18 Dec 2020 ‐ Increased transmissibility

‐ Increased severity

‐ Increased transmissibility

Beta B.1.351 501 Y.V2 K417N

E484K

N501Y

D614G

Oct 2020 South Africa 18 Dec 2020 ‐ Increased transmissibility

‐ Increased severity

‐ Possible reduction of

vaccine effectiveness

Gamma P.1 VOC‐202101/02 K417T

E484K

N501Y

D614G

Jan 2021 Brazil 11 Jan 2021 ‐ Increased transmissibility

‐ Possible increased severity

‐ Possible reduction of

vaccine effectiveness

Delta B.1.617.2 VOC‐21APR‐02 L452R

D614G

P681R

Dec 2020 India 11 May 2021 ‐ Highly transmissible
‐ Highly severe
‐ Possible reduction of

vaccine effectiveness

Abbreviations: VOC, variant of concern; WHO, World Health Organization.
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asparagine (N) to tyrosine (Y) at position 501 is believed to boost

binding affinity to human ACE2.38‐40 This mutation induces higher

concentrations in the pharynx and the nasal cavities, and therefore,

increases its transmission rate.41

2.3.5 | Amino acid substitution D614G

The missense mutation D614G, also known as Doug, denotes a

change from aspartic acid (D) to glycine (G) at position 614. D614G

mutation is shared by all VOCs. Studies reported that it increases the

transmission rate42,43 and leads to higher infectivity of the olfactory

epithelium, therefore, induces anosmia.44

2.3.6 | Amino acid substitutions affecting P681

P681H and P681R substitutions have been detected in Alpha and

Delta, respectively.Worldwide, theprevalenceofP681Hhas increased

exponentially.34,45 P681R is located at the furin cleavage site and in-

creases viral fusogenicity46 and may be associated with a higher

pathogenicity.47 Moreover, the P681R Delta spike mutation ex-

hibits resistance to the neutralising antibodies elicited by

immunisation.48

3 | VACCINE TECHNOLOGY PLATFORMS

Three major vaccine technology platforms are currently exploited to

design safe and effective Covid‐19 vaccines. These platforms are

illustrated in Figure 3 and are summarised in Table 2.

3.1 | The whole‐virus approach

3.1.1 | Inactivated vaccines

An inactivated vaccine contains complete viruses that have been

killed by chemicals, radiation, or heat. The development of this type

of vaccine requires special laboratory facilities to grow the virus

safely, through a long‐time production process, and requires two or

three doses for effective delivery. Currently available flu and polio

vaccines are examples of this type of vaccines.49,50

3.1.2 | Viral vector vaccines

A viral vector vaccine uses a safe virus, either replicating or non‐
replicating, that delivers specific components of the disease‐causing
virus that can stimulate the immune system while remaining

F I GUR E 3 Major vaccine technology platforms are exploited for designing Covid‐19 vaccines. Inactivated Covid‐19 vaccines involve

severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) strains inactivated by radiation or high temperatures. Viral vector Covid‐19
vaccines utilise an adenovirus that incorporate genetic material of the target virus. RNA‐based Covid‐19 vaccines are made of RNA encoding
the target antigen and encapsulated within lipid nanoparticles. DNA‐based Covid‐19 vaccines are made of a DNA plasmid encoding the target

antigen and generally administered by electroporation. The subunit Covid‐19 vaccines contain purified antigens of SARS‐CoV‐2 that stimulate
the immune system. Figure generated with BioRender
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harmless. The virus vector carries target viral proteins into the hu-

man body in order to enhance the immune response. For example,

the Ebola vaccine (Ad26.ZEBOV) consists of a human non‐replicating
adenovirus 26 vector, containing the Ebola virus Mayinga variant

glycoprotein.51,52

3.2 | The nucleic acid approaches

The nucleic acid platform uses genetic information, either DNA or

mRNA, to provide instructions to cells to produce specific proteins,

not the entire virus.53 No gene‐based vaccines had been approved

before the Covid‐19 outbreak.54

3.3 | The subunit approaches

A subunit vaccine uses one or more purified antigens that can

trigger the immune system.55 It does not introduce the whole path-

ogen and does not require a safe viral vector. The Heplisav‐B vac-

cine is an example of an approved subunit vaccine produced by yeast

cells. It is based on the expression of the hepatitis B virus surface

protein.56

4 | LEADING COVID‐19 VACCINE CANDIDATES

Nine vaccine candidates based on theWuhan‐Hu‐1 strain have led the
Covid‐19 vaccine quest. They showed over 50% effectiveness against

symptomatic cases and good efficacy against VOCs. However, some

rare side effects have been reported after vaccination (Table 3).

4.1 | Covid‐19 vaccines based on attenuated SARS‐
CoV‐2 virus

4.1.1 | Sinopharm BBIBP‐CorV Covid‐19 vaccine

Sinopharm BBIBP‐CorV is an inactivated vaccine candidate produced

by the Sinopharm's Beijing Institute of Biological Products (China). A

sample of the WT virus (HB02 strain) was cultivated in Vero cells,

chemically inactivated by β‐propiolactone, then mixed with an

aluminium‐based adjuvant.72 An interim analysis of the phase 3 study

demonstrated that the vaccine was 78.1% effective against symptom-

aticCovid‐19cases.57Aresearchstudycarriedoutwith282 individuals
from Sri Lankawho received the vaccine preparation showed a 10‐fold
reduction in neutralising antibody (nAb) titres against Beta and 1.38‐
fold reduction against Delta, as compared with reference strain.88

TAB L E 2 Summary of SARS‐CoV‐2 vaccine technology platforms

Platform

Type of vaccine

candidate Immune response Benefits Drawbacks

Inactivated Inactivated disease‐causing
virus either by chemicals,

radiation or high

temperature

Mostly humoral ‐ Well established technology

‐ No live components

‐ Relatively simple to manufacture

‐ Risk of vaccine‐enhanced disease

‐ Booster shots may be required

Viral vector A safe virus transfers the

instructions for making

antigens from the

disease‐causing virus
into cells

Humoral and cellular ‐ Well established technology

‐ Safety
‐ Large‐scale production
‐ Strong immunogenicity

‐ Pre‐existing immunity to the vector could

reduce the immune response

‐ Relatively complex to manufacture

RNA Lipid nanoparticle

encapsulated mRNA of a

disease‐causing virus

Humoral and cellular ‐ Relatively simple to manufacture

‐ Fast development
‐ No live components,

so no risk of the vaccine

triggering disease

‐ Lipid nanoparticles

require ultra‐cold storage

‐ Never been licensed in humans

DNA DNA of the disease‐causing
virus delivered by

electroporation

Humoral and cellular ‐ Relatively simple
to manufacture

‐ Electroporation generates

a robust immune response

‐ No live components, so no

risk of the vaccine

triggering disease

‐ Electroporation may be complicated

‐ Different distribution systems

may be required

‐ Never been licensed in humans

Subunit One or more antigens of the

disease‐causing virus
Humoral and cellular ‐ Well established technology

‐ No live components, so

no risk of the vaccine

triggering disease

‐ Relatively stable

‐ Relatively complex to manufacture

‐ Adjuvants may be required
‐ Determining the best antigen

combination takes time
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4.1.2 | SinoVac CoronaVac Covid‐19 vaccine

CoronaVac is an inactivated vaccine candidate manufactured by the

biopharmaceutical company SinoVac (Beijing, China). Isolated SARS‐
CoV‐2 virus (CN2 strain) was cultured in Vero cells, chemically inac-

tivated using β‐propiolactone, and mixed with alum adjuvant.73 Phase

3 trial conducted in Brazil showed that VE to prevent symptomatic

Covid‐19 was 50.7%.85 Lab studies revealed that the vaccine had a

vaccinee serum less effective in neutralising B.1.1.7. However, nAb

activitywas significantly reduced for B.1.351 andP1 by a factor of 5.27

and 3.92, respectively.89,90 Other data confirmed the reduced nAb

activity against P1 lineage, compared with WT lineage.91 Another lab

study demonstrated that CoronaVac has an estimated VE of 59%

against Delta.92

Akdas et al.16 described a case report of pityriasis rosea (PR)

in a 45‐year‐old woman with no history of allergies. PR was

developed 4 days after receiving the first dose. Skin rashes were

also reactivated 4 days after receiving the second dose and faded

within 7 days. Reactive arthritis (ReA) was also described in a 23‐
year‐old female who had a painful left knee for 18 days after

CoronaVac immunisation. Her health condition was back to normal

within 4 weeks of follow‐up.17

4.1.3 | Bharat Biotech BBV152/Covaxin Covid‐19
vaccine

BBV152, also known as Covaxin, is a Vero cell‐based whole‐virion
inactivated SARS‐CoV‐2 vaccine developed by Bharat Biotech (In-

dia). It is formulated with a toll‐like receptor 7/8 agonist molecule

(IMDG) chemisorbed on aluminium hydroxide gel.93

Phase 3 trial in India showed that BBV152 is 77.8% effective

against symptomatic cases and confers 65.2% protection against Delta

variant.94 De Souza et al.95 reported that the convalescent sera of

recipients of BBV152 failed to efficiently neutralise P.1 lineage.

Further studies demonstrated that BBV152 has equivalent nAb titres

to Alpha,96 a threefold reduction in neutralisation activity against Beta

variant and promising effect in neutralising the Delta VOC.97

4.2 | Covid‐19 vaccines based on adenoviral vectors

4.2.1 | Oxford‐AstraZeneca AZD1222 Covid‐19
vaccine

AZD1222, known as ChAdOx1 nCoV‐19, is a chimpanzee‐based
nonreplicating adenovirus vaccine vector (ChAdOx1). It contains

the full‐length S protein with an adjuvant sequence (tissue plas-

minogen activator).76,98 AZD1222 was developed by Oxford Uni-

versity and the Sweden‐based pharmaceutical company

AstraZeneca.60 Analysis in the United Kingdom, Brazil, and South

Africa indicated that the AZD1222 vaccine was 81.3% effective at

preventing symptomatic Covid‐19 in participants who received

two doses spaced within ≥12 weeks.68 A study in the UK showed

that ChAdOx1 nCoV‐19 confers 74.5% protection against Alpha

and 67.0% protection against Delta.99 It is also 77.9% effective

against Gamma100: however, it is only 10.4% effective against

Beta.101

In mid‐March, AZD1222 was suspended in 18 European and

Asian countries following cases of thrombosis and thrombocyto-

penia syndrome (TTS) and deaths in some immunised people after

exposure to the vaccine.102 Two weeks later, the Medicines and

Healthcare products Regulatory Agency reported 30 cases,

including seven deaths, of blood clot events among 18.1 million

doses of the AZD1222 vaccine.103 Schultz et al.11 and Tiede

et al.104 reported 10 cases of venous thrombosis and thrombocy-

topenia that occurred 5 to 11 days after prime vaccination in pa-

tients aged between 34 and 67 years old. All the cases had

noticeably high levels of auto‐antibodies to platelet factor 4 (PF4),

although without previous exposure to heparin.11,104

4.2.2 | Janssen AD26.CoV2.S Covid‐19 vaccine

Ad26.COV2.S was manufactured by Janssen Vaccines of Johnson &

Johnson. It is composed of a non‐replicating adenoviral vaccine

(adenovirus serotype 26, Ad26) encoding a prefusion‐stabilised
SARS‐CoV‐2 S glycoprotein, which contains a mutation at the

furin cleavage site and two proline stabilising mutations.78 An

interim analysis of the phase 3 trial showed that VE was 66%

against symptomatic disease.61 VE remained high even in South

Africa and Brazil where new variants predominate.61 A research

study revealed a fivefold reduction in nAb activity against the Beta

strain and a 3.3‐fold reduction against the Gamma strain, as

compared with the original strain. nAb titres were stable against

Alpha, but a modest 1.6 fold reduction in neutralising activity was

seen against Delta as compared with the B.1 lineage (the first

variant of SARS CoV‐2, D614G).105

Cases of TTS were reported in women aged between 18 and

49 years old at a rate of about 1 per 7 million.106 For men of all

ages and older women, TTS is even rarer. Sadoff et al.107 described

a case report of extensive thrombosis associated with severe

thrombocytopenia and disseminated intravascular coagulation in a

25‐year‐old man who had received the Ad26.COV2.S vaccine

14 days before the appearance of symptoms. From 1 March to 21

April 2021, 12 US participants were reported with cerebral venous

sinus thrombosis and thrombocytopenia.12 All cases were women

aged from 18 to younger than 60 years, and 25% of them died.

During the same period, four cases of anaphylaxis were also re-

ported, but none of them resulted in death.14 In late June 2021,

108 cases of Guillain–Barré syndrome (GBS) were also reported,

and one of them resulted in death.15 Lately, Nassar et al. reported

one case of a myocarditis‐related death in a 70‐year‐old woman,

2 days after receiving the vaccine.108
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4.2.3 | Gamaleya Sputnik V Covid‐19 vaccine

Sputnik V was manufactured by the Gamaleya Research Institute

of Epidemiology and Microbiology (Russia). It is an adenovirus‐
based vaccine composed of two adenoviral vectors (Ad26 and

Ad5) carrying the gene coding for full‐length S protein.64

Interimanalysis of thephase3 study showed that theVEof Sputnik

V was 91.6% against symptomatic Covid‐19.80 In Argentina, 12 serum
samples were collected from recipients of the vaccine to characterise

its neutralisation activity.109 Results showed that it efficiently neu-

tralised the S protein of the B.1.1.7 variant and the B.1 lineage. How-

ever, the same sera had moderately reduced activity against the S

protein of the Gamma variant carrying the E484Kmutation alone, and

a markedly reduced neutralising activity against the S protein of the

Beta strain.109 At the end of June 2021, Sputnik V developers

announced that the vaccine was around 90% effective against the

Delta variant.110

4.3 | Covid‐19 vaccines based on RNA

4.3.1 | Moderna mRNA‐1273 Covid‐19 vaccine

The mRNA‐1273 vaccine was developed by Moderna and the Na-

tional Institute of Allergy and Infectious Diseases. The mRNA is

encapsulated in lipid nanoparticles (LNPs) and encodes the full‐length
S antigen, with a transmembrane anchor and an S1‐S2 cleavage site.

Two proline subunits were included in the S2 to stabilise the S pro-

tein in its prefusion conformation, and therefore improve its

immunogenicity.69

An interim analysis of the phase 3 clinical trial showed that the

vaccine had 94.1% efficacy in preventing symptomatic infections111

The RBD mutations found in the UK, South Africa, and Brazil variants

decrease the VE by a small, but significant margin.112 Shen et al.113

further confirmed that Alpha remains sensitive to neutralisation by

serum samples from recipients of mRNA‐1273. Another study from
Qatar indicated that the vaccine is highly effective against Alpha and

Beta infections. Two weeks after the boost dose, mRNA‐1273 was

100% effective against Alpha and 96.4% effective against Beta.114 The

neutralising activity against VOCs was further evaluated by Choi

et al.115 Studies indicated minimal effects on neutralising Alpha,

whereas nAb activity against Beta, Gamma, and Delta variants

decreased from 2.1‐fold to 8.4‐fold, as compared with the original

virus.

Between 21 December 2020, and January 2021, over 4 million

doses of mRNA‐1237 were delivered. At the same period, 10 cases of
anaphylaxis were reported after administration of the first dose.116

No anaphylaxis‐related deaths were reported. Since April 2021,

cases of myocarditis have been reported within several days after the

immunisation with mRNA Covid‐19 vaccination, including Moderna

and Pfizer vaccines. Described cases have occurred mainly in male

adolescents and young adults after the boost dose.18

4.3.2 | BioNTech – Pfizer BNT162b2 Covid‐19
vaccine

BNT162b2 was prepared by BioNTech with support from the

pharmaceutical company Pfizer.62 The mRNA is packaged in LNP

and encodes the entire spike protein, modified after including two

prolines in one of the subunits to stabilise the prefusion conforma-

tion and increase its immunogenicity.117 The preliminary data from

phase 2/3 clinical trials demonstrated that BNT162b2 had 95% ef-

ficacy in preventing symptomatic SARS‐CoV‐2 infections.62

The quick spread of UK and South Africa variants (both encoding

theN501Y substitution) is of particular concern due to their location in

the RBD of the S glycoprotein.118 Reported data showed that the

neutralising activity against the novel substitution was not reduced

compared to the virus carrying the original Asn501.118 Six volunteers

who received two doses of the vaccinewere recruited to test the effect

of BNT162b2 against VOCs encoding E484K‐, N501Y‐ or K417N/
E484K/N501‐mutant S proteins.112Data revealed thatRBDmutations

found in Alpha, Beta, and Gamma variants can decrease the efficacy of

the vaccine by a small, but significantmargin.112 Tauzin et al.119 further

showed that a single dose of the vaccine boosts strong nAb capable to

neutralise different spike mutations – including E484K, S477N,

N501Y, and N501S. Later, Lopez Bernal et al.99 revealed that VE was

93.7% and 88.0% against the Alpha and Delta variants, respectively.

Moreover, BNT162b2 is 75% effective against Beta120 and retains

broad efficacy against the Gamma in people aged 80–96 years of

age.121

Anaphylaxis was reported in a small number of people who

received the Pfizer‐BioNTech vaccine.13 However, it was safe for

recipients without previous allergic susceptibility to vaccine's

components. A pooled analysis showed that myocarditis mainly

occurs following the administration of the boost dose of

BNT162b2 in males over the age of 16. All affected individuals

recovered quickly.122

4.4 | Covid‐19 vaccines based on subunit particles

4.4.1 | Novavax NVX‐CoV2373 Covid‐19 vaccine

NVX‐CoV2373 was co‐developed by the American biotechnology

Novavax and the Coalition for Epidemic Preparedness Innovations

foundation. The recombinant subunit vaccine was produced in the

baculovirus‐ Sf9 insect cell expression system. It contains the full‐
length S glycoprotein stabilised in the prefusion conformation with a

saponin‐based Matrix‐M™ adjuvant.83,84 During predominant trans-

mission of B.1.351 in South Africa, the phase 2a‐b clinical trials indi-
cated that NVX‐CoV2373 confers cross‐protection against Beta

variants.123 In fact, the recombinant vaccine is 51% effective against

B.1.351 in HIV‐negative volunteers. Phase 3 clinical trials showed that
Novavax provided 96.4% protection against symptomatic Covid‐19
and 86.3% against the Alpha variant.71
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5 | PROMISING COVID‐19 VACCINE
CANDIDATES

Although many Covid‐19 vaccines have been developed so far,

additional effective vaccines are still needed to fight Covid‐19.
Promising Covid‐19 vaccines with different mechanisms of action

have demonstrated excellent safety and clinical efficacy profiles in

clinical trials (Table 4).

5.1 | Covid‐19 vaccines based on attenuated SARS‐
CoV‐2 virus

5.1.1 | Sinopharm WIBP‐CorV Covid‐19 vaccine

WIBP‐CorV is an inactivated SARS‐CoV‐2 vaccine candidate

produced by the Chinese Sinopharm's Wuhan Institute of Bio-

logical Products and Wuhan Institute of Virology. An isolated

SARS‐CoV‐2 strain (WIV‐04) was cultivated in Vero cells, chem-

ically inactivated by β‐propiolactone, then mixed with an

aluminium‐based adjuvant.129,130 Phase 1 and 2 trials revealed

that WIBP‐CorV had a low rate of side effects and good immu-

nogenicity.129 The interim analysis of phase 3 clinical trials

showed that the vaccine is 72.8% effective against symptomatic

Covid‐19 cases and 100% against severe disease.57

5.2 | Covid‐19 vaccines based on adenoviral vectors

5.2.1 | CanSino Bio Convidecia/AD5‐nCOV Covid‐
19 vaccine

AD5‐nCOV, also known as Convidecia, was developed by CanSino

Biologics in cooperation with the Academy of Military Medical Sci-

ences. It is an adenovirus‐based vaccine composed of a replication‐
defective adenovirus type 5 vector (Ad5) incorporating the full‐
length gene coding for the S protein.124 A phase 1 clinical trial

demonstrated that Convidecia is safe, tolerable, and can induce hu-

moral and cellular responses.124 The phase 2 study showed that AD5‐
nCOV induced specific nAb and T cell responses.139 In February 2021,

the Pakistan subset trial indicated that AD5‐nCOV is 65.7% effective

at preventing symptomatic cases and 100% effective at preventing

severe disease.140

5.3 | Covid‐19 vaccines based on DNA

5.3.1 | Zydus Cadila ZyCoV‐D Covid‐19 vaccine

ZyCoV‐D, the world's first plasmid DNA vaccine for human use,

was prepared by Zydus Cadila, India. It comprises a DNA plasmid

vector pVAX1 carrying the gene encoding the S glycoprotein plus

the sequence encoding for the IgE signal peptide. The DNA

plasmid construct was transformed into Escherichia coli DH5‐
alphaTM chemically competent cells.131,132,137 ZyCoV‐D is the

first Covid‐19 vaccine approved for young adults older than

12 years.125 The phase 1 part of the phase 1/2 clinical trial found

the DNA vaccine candidate safe and tolerable.137 Moreover,

ZyCoV‐D induces antibody responses against S glycoprotein and

nAb against WT virus strain. Interim data from the phase 3

clinical trial reported an efficacy of 66.6% against symptomatic

cases.141

5.4 | Covid‐19 vaccines based on RNA

5.4.1 | CureVac N.V. CureVac/CVnCoV Covid‐19
vaccine

CVnCoV was developed by the biopharmaceutical company Cur-

eVac N.V. Unlike its competitors (Pfizer‐BioNTech and Moderna

vaccine candidates), it uses a natural RNA. CureVac is an LNPs

encapsulated mRNA vaccine that encodes the full‐length S

glycoprotein.128

Interim data from phase 1 clinical trials showed that CVnCoV

was safe and tolerable in all participants.138 Furthermore, the

mRNA vaccine induces strong nAb responses even at the lowest

doses tested.138 The primary data of the phase 2b/3 clinical trials

indicated that the non‐chemically modified mRNA is 48.2%

effective against symptomatic Covid‐19 cases, 70.7% against

moderate‐to‐severe disease, and 100% against hospitalisation and

death.142 However, only 3% of the sequenced Covid‐19 cases

were WT SARS‐CoV‐2.

5.5 | Covid‐19 vaccines based on subunit particles

5.5.1 | VECTOR Institute EpiVacCorona Covid‐19
vaccine

EpiVacCorona is Russia's second Covid‐19 vaccine candidate. This

subunit vaccine candidate was prepared by the VECTOR Institute

based on three chemically synthesised peptides of the S glyco-

protein, expressed as a chimeric protein (with E. coli maltose‐
binding protein).126 The phase 1/2 clinical trials showed that

EpiVacCorona is safe and immunogenic. All the recipients of the

peptide‐base vaccine developed specific nAb against SARS‐CoV‐2
antigens 42 days following the first vaccination.126

5.5.2 | Anhui Zhifei ZF2001 Covid‐19 vaccine

ZF2001 was co‐developed by the Chinese Anhui Zhifei Longcom

and the Academy of Military Medical Sciences. The recombinant

subunit vaccine contains the dimeric form of the RBD of the S

protein and a conventional alum adjuvant.127 Phase 1 and 2 trials
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demonstrated that the RBD‐vaccine induced high nAb titres and

cytokines associated with T‐helper 1 and T‐helper 2 cells.127

Recent data showed that RBD‐vaccine retained neutralising ef-

fects against Beta and Gamma variants and preserved its neu-

tralising activity against Delta strain.143

6 | CONCLUSIONS AND FUTURE PERSPECTIVES

The first generation of Covid‐19 vaccines focusing on the spike

glycoprotein has shownpromise in diminishing the spread of Covid‐19.
However, the VE of current vaccineswas affected by locally circulating

variants. This review article suggests that frontrunners Covid‐19
vaccines have good neutralising activity against the Alpha strain, an

intermediate impact onGamma andDelta strains, and a reduced effect

on the Beta strain. Nevertheless, long‐term evaluation of neutralising

activity is needed to evaluate the persistence of protective antibodies

against novel variants.

Rare adverse events have also been reported following Covid‐19
immunisation – including TTS, anaphylaxis, myocarditis, and GBS.

Although Ad26.CoV.S vaccine alleviates all these rare side effects,

anaphylaxis and myocarditis mainly occur after immunisation with

mRNA‐Based vaccines, and thrombosis thrombocytopenia syndrome
is associated with adenoviral vector‐based vaccines. More research is

needed to fully understand the link between Covid‐19 vaccines and

rare side effects and long‐term investigation is further required to

assess delayed reactions to immunisation.
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